
Task 3 Report

1. Task requirement

Use Block Vector Quantization Coding (BVQC) to encode an image

and then decode the encoded file to reconstruct the image.

The main program should do the following things:

1. Get the input from the user:

Get the file: Prompt the user to input the file name of an image

file. Give hints to help the user to input a valid file and make sure

the exceptions can be handled in case that the specified file does

not exist.

Get the block size d: Prompt the user to input the block size d.

Give hints to help the user to input a valid value of block size

which must be an integer power of 2. If null string is input, the

default block size (4) will be used.

2. Encode

1) Get the input image size and normalize its intensity values

such that each pixel value is bounded in [0,255]. Display the

image.

2) Partition the image into block of size d*d. For each block,

compute the mean and standard deviation.

Then compute the g0=max(0,mean-standard deviation) and

g1=min(255,mean+standard deviation) and construct a code

book based on the table below.

3) After that, divide the block into subblocks of size 2x2 and

approximate each of them as the closest codeword based on

their distances from the subblock according to the distance

formula below.(When there are more than one closest

codewords, the one with the minimum index value is picked)

4) Next, save the encoding result in a file in the format shown

below.

5) Finally, return the data structure that carries the information

of the encoding output which contains the mean and standard

deviation of each block and the index of a specific subblock.

3. Decode

1) Read the file to get the data structure that carries the encoding

result.

2) Decode the file, display the reconstructed image and finally

save the reconstructed image as a conventional image file.

4. Evaluation of the result

Based on the formula, calculate the mean square error (mse) and

peak-to-peak signal-to-noise ratio (PPSNR) of the reconstructed

image.

2. Explanation of the code

1. Get the input from the user

1) Get the image file to be processed.

The function readfile() uses a dead loop to ask the user to input

the file name continuously until the input file name is valid. Use

try…except… to handle the case that the specified file does not

exist.

The result:

2) Get the block size d

The function readd() uses a dead loop to ask the user to input the

d until the d is valid. If a null string is input, return the default

value of d which is 4.

This part is used to check whether d is an integer power of 2. The

idea is use i to enumerate each value of 2 to the power of an

integer and check whether the value of i can equal to d. If

currently i is bigger than d and the program still doesn’t return

the value of d to the main program, which means that there is no

chance for i to equal to d, so that we can end the loop.

The results:

2. Encode

The whole encode function:

1) Read and show the image

2) Preprocessing

Normalize the pixel values to (0,255).

Calculate the number of rows and columns of the blocks.

Create one array to store the mean value of each block.

Create one array to store the standard deviation of each block.

Create one array to store the code words for each 2*2

subblock.

3) Process each block

For each block, calculate the mean and the standard deviation

and store them in the appropriate position in the meanplane

and the stdplane. Since i and j are enumerating each block,

int(i/d) and int(j/d) represent the corresponding row and

column these values should be stored in the meanplane and

the stdplane.

Calculate g0 and g1. Then enumerate each subblock in the

current block. Call function codeword() to calculate the code

word for each subblock and store the code word in the

appropriate position in the codeplane. Because (i,j) represent

the coordinates of the top left corner of the current block in

the original image X, and (m,n) represent the coordinates of

the top left corner of the current subblock in the current block,

(i+m,j+n) represent the coordinates of the top left corner of

the current subblock in the original image X. Since each

subblock is of size 2*2, ((i+m)/2, (j+n)/2) should be the proper

position to store the current code word in the codeplane.

The codeword function:

Variable minn is used to store the min value of the 4 distances.

Variable code is used to store which code should be chosen.

The function will ask for 3 parameters a(a 2*2 subblock), g0

and g1, and will return the code word should be chosen.

4) Write the file

First, create an array header of size 6 to store the header of the

file to fit the requirement below. Write the head into the file.

Next, enumerate each block and write the content of each

block into the file. The content consists of three parts: The

mean of the block, the standard deviation of the block and all

the code words in this block. The format of the content should

follow the instructions below.

These two lines are used to write the mean and the standard

deviation into the file.

This part is to write the code words into the file.

Due to the requirement, we have to store each code word in

length of 2 bits. Hence, we have to convert every 4 code words

into an 8-bit unsigned integer value. For example, if we have

4 code words 1,2,3,0 and we want to convert them into an 8-

bit unsigned integer, what should we do? We can change them

into binary to explain.

1(Decimal)=0000,0001(Binary)

2(Decimal)=0000,0010(Binary)

3(Decimal)=0000,0011(Binary)

0(Decimal)=0000,0000(Binary)

If we multiply the first code word 1 by 64. 1 will become

0100,0000 in binary. Then, multiply the second code word 2

by 16, 2 will become 0010,0000 in binary. Next, multiply the

third code word 3 by 4, 3 will become 0000,1100 in binary.

Leave the fourth code word 0 unchanged. Finally, add all the

four Binary value together, we have 0110,1100. Then we

successfully change the four integers into one 8-bit unsigned

integer. In conclusion, multiply the first code word by 64,

multiply the second code word by 16, multiply the third code

word by 4 and leave the fourth code word unchanged. Add

them all up and we will have a value in range [0,255]. Then

we can realize use 2 bits to store a particular code word in the

file.

Variable cnt is counting from 1 to 4 periodically. It indicates

the position of the 2-bit code word in the whole byte.

Variable now is storing the calculation result.

Use this line to realize the above calculation.

This part in to check whether the 4 code words are all stored

in the current byte. If so, write the current byte into the file

and reset the variable cnt and now.

This part is to check, in the end, whether we should add k bits

to fill the current byte. For example, after enumerating all

subblocks, if cnt is 2, which means we have only two code

words in the current byte, we have to add two code words 00

and 00 to fill the current byte.

5) Return the dictionary

As the requirement below, the decode function has to return a

dictionary.

This line is used to return the dictionary:

The dictionary:

3. Decode

The whole encode function:

1) Read the header

2) Preprocessing

Create an array OImg to store the pixel values of the

reconstructed image.

Vairable n is used to store the number of bytes we have to read

for each block. Firstly, 1 byte for mean and 1 byte for standard

deviation. The rest bytes are for code words. In each block,

we have (d/2)*(d/2) subblocks in total. Each subblock

corresponds to a 2-bit code word in the file, hence, the bits for

subblocks are (d/2)*(d/2)*2 in total and let (d/2)*(d/2)*2

divide by 8 to get the number of bytes for code words. Here,

in case that the stuffing k bits occurs, we have to use np.ceil()

to round up the result.

3) Decode the file

The whole code for this part:

This part is to read a block’s content and use the mean and

standard deviation to calculate g0 and g1.

This part is used to read 2-bit code words in the file and based

on the code word, rebuild the image.

Variable cnt is used to store how many code words have been

read in order to calculate which pixels in the reconstructed

image should be given the corresponding values.

For each byte storing the code words, use variable current to

store the code word and variable temp to store the modified

value of the byte.

Variables now_row and now_col represent which row and

column the chosen code book should be in the block. Because

for each row, there are d/2 subblocks, cnt/(d/2) should be the

row number of the chosen code book and cnt%(d/2) should be

the column number of the chosen code book.

In the following, based on the code word, reconstruct the

image.

Finally, check whether cnt ==d/2*d/2. Because d/2*d/2 is the

total number of subblocks in a block. We have to quit the loop

for reading the code word as soon as we have read all the code

words in this block to avoid reading the k stuffing bits.

4) Display the reconstructed image and return the array

storing the pixel values of the reconstructed image for

evaluation.

4. Evaluation of the result

In the main program:

Read the initial image and normalize the pixel values to [0,255].

The function called evaluate:

Variable size is to calculate how many pixels need to be

calculated.

When d=2, the results are as follows:

When d=4, the results are as follows:

When d=8, the results are as follows:

3. Verification

For the encode results, use a hex editor to verify the

result.

The encode result is the same as the one in the hints

sheet.

For the final result verification, compare the decode

image to the original figure.

The initial image:

When d=2, the reconstructed image:

When d=4, the reconstructed image:

When d=8, the reconstructed image:

4. Code

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.image as mping

import os

import math

def readfile():

 while(1):#The program will loop until a valid input is received.

 filename=input("Please input the file name of an image:\n")

 try:#Use try...except... to handle the exceptions in case that the file does not exist.

 img=mping.imread(filename)

 except IOError:

 print("<{}> does not exist!".format(filename))

 else:

 return filename

def readd():

 while(1):#The program will loop until a valid input is received.

 d=input("Please input the value of d:\n")

 if(d==''):#If null string is input, return the default value 4 of d.

 return 4

 if(int(d)>1):#check whether d is an integer power of 2

 i=1

 while(i<=int(d)):

 if(i==int(d)):

 return int(d)

 i*=2

 print("d must be an integer power of 2!\n")

def codeword(a,g0,g1):

 minn=(a[0,0]-g0)**2+(a[0,1]-g0)**2+(a[1,0]-g1)**2+(a[1,1]-g1)**2#Calculate the

distance between the subblock and codewords C0, then give this value to the variable

minn to record the current min value.

 code=0#Initial the codeword to be chosen to codeword C0

 count1=(a[0,0]-g1)**2+(a[0,1]-g1)**2+(a[1,0]-g0)**2+(a[1,1]-g0)**2#Calculate

the distance between the subblock and codewords C1.

 if(count1<minn):#If this distance is less than minn, change the minn and code

accordingly.

 minn=count1

 code=1

 count2=(a[0,0]-g0)**2+(a[0,1]-g1)**2+(a[1,0]-g0)**2+(a[1,1]-g1)**2#Calculate

the distance between the subblock and codewords C2.

 if(count2<minn):#If this distance is less than minn, change the minn and code

accordingly.

 minn=count2

 code=2

 count3=(a[0,0]-g1)**2+(a[0,1]-g0)**2+(a[1,0]-g1)**2+(a[1,1]-g0)**2#Calculate

the distance between the subblock and codewords C3.

 if(count3<minn):#If this distance is less than minn, change the minn and code

accordingly.

 minn=count3

 code=3

 return code

def BVQCencode(in_image_filename,out_encoding_result_filename,d):

 img=mping.imread(in_image_filename)#read the image

 plt.imshow(img,cmap='gray')

 plt.show()#show the image

 X=np.array(img)*255#Normalise the pixel values to (0,255).

 rows_of_blocks=int(X.shape[0]/d)#Calculate the number of rows for blocks

 cols_of_blocks=int(X.shape[1]/d)#Calculate the number of columns for blocks

 meanplane=np.zeros([rows_of_blocks,cols_of_blocks],dtype="uint8")#create an

array to store the mean of each block

 stdplane=np.zeros([rows_of_blocks,cols_of_blocks],dtype="uint8")#create an

array to store the standard deviation of each block

 codeplane=np.zeros([int(X.shape[0]/2),int(X.shape[1]/2)],"uint8")#create an array

to store the code words

 for i in range(0,X.shape[0],d):

 for j in range(0,X.shape[1],d):#enumerate each block

 block=X[i:i+d,j:j+d]#get the block from the normalised image

 miu=np.mean(block)#calculate the mean of the current block

 std=np.std(block)#calculate the standard deviation of the current block

 meanplane[int(i/d),int(j/d)]=np.uint8(round(miu))#store the mean value of

this block to the appropriate position of the meanplane

 stdplane[int(i/d),int(j/d)]=np.uint8(round(std))#store the standard deviation

value of this block to the appropriate position of the stdplane

 g0=max(0,miu-std)#compute g0

 g1=min(255,miu+std)#compute g1

 for m in range(0,d,2):

 for n in range(0,d,2): #enumerate each subblock in the current block

 code=codeword(X[i+m:i+m+2,j+n:j+n+2],g0,g1)#get the code for the

current subblock

 codeplane[int((i+m)/2),int((j+n)/2)]=np.uint8(code)##store the code of

the subblock to the appropriate position of the codeplane

 file=open(out_encoding_result_filename,"wb")

 header=np.zeros([6],dtype='uint8')#write the header

 header[0]=np.uint8(6)

 header[1]=np.uint8(d)

 header[2]=np.uint8(cols_of_blocks%256)

 header[3]=np.uint8(cols_of_blocks/256)

 header[4]=np.uint8(rows_of_blocks%256)

 header[5]=np.uint8(rows_of_blocks/256)

 for byte in header:

 file.write(byte)

 for i in range(0,rows_of_blocks):

 for j in range(0,cols_of_blocks):#enumerate each block

 file.write(meanplane[i,j])#write the mean of this block into the file

 file.write(stdplane[i,j])#write the standard deviation of this block into the file

 cnt=0#used to count from 0 to 4 so that we can know when a byte will be

generated

 now=0#used to store the current value of the byte

 for m in range(0,d,2):

 for n in range(0,d,2):#enumerate each subblock

 cnt+=1

 now=now*4+codeplane[int((i*d+m)/2),int((j*d+n)/2)]#change the

current value of the byte

 if cnt==4:#if 4 operations have been done, write the byte into the file and

initialise the cnt and now

 file.write(np.uint8(now))

 cnt=0

 now=0

 if cnt!=0:#if finally, the cnt is not 0, it means that we have to add K bits to form

a complete byte,

 now*=(4**(4-cnt))

 file.write(np.uint8(now))

 file.close()

 return ({'M':meanplane,'Sd':stdplane,'Idx':codeplane})

def BVQCdecode(in_encoding_result_filename, out_reconstructed_image_filename):

 file=open(in_encoding_result_filename,"rb")

 header_len=file.read(1)[0]#read the header

 d=file.read(1)[0]

 no_of_block_cols=file.read(1)[0]+file.read(1)[0]*256

 no_of_block_rows=file.read(1)[0]+file.read(1)[0]*256

 OImg=np.zeros([no_of_block_rows*d,no_of_block_cols*d])#create an array to

store the pixel values after decoding

 n=np.ceil(d/2*d/2*2/8)+2#n represents the number of bytes we have to read for

each block

 for i in range(0,no_of_block_rows):

 for j in range(0,no_of_block_cols):#enumerate each block

 bfr=file.read(np.uint(n))#read one content for a block

 mean=bfr[0]#read the mean

 std=bfr[1]#read the standard deviation

 g0=max(0,mean-std)#calculate g0

 g1=min(255,mean+std)#calculate g1

 cnt=0#cnt is used to store how many indexes have been read

 for byte in bfr[2:]:

 temp=np.uint8(byte)

 for m in range(0,4):#deal with the four indexes in a byte

 current=int (temp/(64/(4**m)))#get the (m+1)th index in a byte

 temp-=64/(4**m)*current#modify twmp accordingly

 now_row=int(cnt/(d/2))#based on the number of indexes that have been

read, we can define the index is in which row and column in the codeplane

 now_col=int(cnt%(d/2))

 #Based on the index, rebulid the block with according values in the code

book

 if(current==0):

 OImg[i*d+2*now_row,j*d+2*now_col]=g0

 OImg[i*d+2*now_row,j*d+2*now_col+1]=g0

 OImg[i*d+2*now_row+1,j*d+2*now_col]=g1

 OImg[i*d+2*now_row+1,j*d+2*now_col+1]=g1

 if(current==1):

 OImg[i*d+2*now_row,j*d+2*now_col]=g1

 OImg[i*d+2*now_row,j*d+2*now_col+1]=g1

 OImg[i*d+2*now_row+1,j*d+2*now_col]=g0

 OImg[i*d+2*now_row+1,j*d+2*now_col+1]=g0

 if(current==2):

 OImg[i*d+2*now_row,j*d+2*now_col]=g0

 OImg[i*d+2*now_row,j*d+2*now_col+1]=g1

 OImg[i*d+2*now_row+1,j*d+2*now_col]=g0

 OImg[i*d+2*now_row+1,j*d+2*now_col+1]=g1

 if(current==3):

 OImg[i*d+2*now_row,j*d+2*now_col]=g1

 OImg[i*d+2*now_row,j*d+2*now_col+1]=g0

 OImg[i*d+2*now_row+1,j*d+2*now_col]=g1

 OImg[i*d+2*now_row+1,j*d+2*now_col+1]=g0

 cnt+=1

 if cnt==int(d/2*d/2):#This part is used to handle the case that stuffing bits

exists.

 break

 file.close()

 plt.imshow(OImg,cmap='gray')

 plt.show()#show the reconstructed image

 plt.imsave(out_reconstructed_image_filename,OImg,cmap='gray') #save the

image

 return OImg

def evaluate(original,product):

 size=X.shape[0]*X.shape[1]

 ans=0

 for i in range(0,X.shape[0]):

 for j in range(0,X.shape[1]):

 ans+=(original[i][j]-product[i][j])**2#for each pixel in original image and the

reconstructed image,calculate the error.

 mse=ans/size

 PPSNR=10*math.log(255*255/mse,10)

 return mse,PPSNR

in_file=readfile()#Read the file.

out_file="image_encoded.out"#The encoded image is stored in this file.

d=readd()#Store d.

result=BVQCencode(in_file,out_file,d)# Do the encode and the returned dictionary is

stored in variable result.

print(result)

file_in="image_encoded.out"#Change the input file and output file name to do the

decode.

file_out="image_decoded.png"

OImg=BVQCdecode(file_in,file_out) # OImg is an array store pixel values of the

decoded image.

img=mping.imread(in_file)#This in_file stored the original pixel values of the image

which is bounded in (0,1).

X=np.array(img)*255#Normalise the pixel values to (0,255) to calculate the error.

MSE,PPSNR=evaluate(X,OImg) #Calculate the error.

print("MSE={}".format(MSE))

print("PPSNR={}".format(PPSNR))

